

Reversibility of Na⁺/Mg²⁺ antiport in rat erythrocytes

Theodor Günther *, Jürgen Vormann

Institute of Molecular Biology and Biochemistry, Free University of Berlin, Arnimallee 22, D-14195 Berlin, Germany

Received 22 June 1994; accepted 11 November 1994

Abstract

Rat erythrocytes loaded with Mg²⁺ plus Na⁺ performed Mg²⁺ uptake under an intracellular/extracellular Na⁺ gradient. Mg²⁺ uptaké was coupled to Na⁺ release at a stoichiometric ratio of 1 Mg²⁺/2 Na⁺. Mg²⁺ uptake was inhibited by amiloride, imipramine and quinidine. Mn²⁺ was taken up by the same transporter as Mg²⁺. Similar results had been found for net Mg²⁺ efflux via Na⁺/Mg²⁺ antiport in such rat erythrocytes. Hence, it can be concluded that Na⁺/Mg²⁺ antiport in Mg²⁺-loaded rat erythrocytes operates reversibly according to the direction of the Na⁺ gradient which is a contributing driving force. Net Mg²⁺ influx was dependent on ATP which increased the affinity of intracellular Mg²⁺ by activating Na⁺/Mg²⁺ antiport. Mg²⁺ uptake was increased by phorbol ester and inhibited by staurosporine, indicating that ATP may function via protein phosphorylation by protein kinase C.

Keywords: Sodium ion; Magnesium ion; Antiport; Amiloride; Protein kinase C; (Rat erythrocyte)

1. Introduction

Erythrocytes perform $\mathrm{Na}^+/\mathrm{Mg}^{2^+}$ antiport, which is active in Mg^{2^+} -loaded cells, and results in net Mg^{2^+} efflux [1,2]. $\mathrm{Na}^+/\mathrm{Mg}^{2^+}$ antiport in rat erythrocytes was previously thought to be irreversible, operating only as Mg^{2^+} efflux coupled to Na^+ influx [1]. In those earlier experiments, rat erythrocytes were loaded with Na^+ and reincubated in Na^+ -free, Mg^{2^+} -containing medium. However, $\mathrm{Na}^+/\mathrm{Mg}^{2^+}$ antiport takes place only in Mg^{2^+} -loaded cells [1–3], indicating that $\mathrm{Na}^+/\mathrm{Mg}^{2^+}$ antiport must be activated by increased intracellular Mg^{2^+} concentration. Therefore, we investigated whether $\mathrm{Na}^+/\mathrm{Mg}^{2^+}$ antiport can be reversed in Na^+ -loaded rat erythrocytes following additional Mg^{2^+} loading.

2. Materials and methods

2.1. Cell loading

Blood was taken from anaesthetized rats (50 mg/kg Nembutal i.p.) by heart puncture with a heparinized sy-

ringe and centrifuged at $1000 \times g$ for 10 min. The plasma and buffy coat were aspirated and the red cells were washed twice in 150 mM NaCl. Each experiment was done with erythrocytes from a single rat.

The cells were loaded with Na⁺ and Mg²⁺ by incubating a 10% cell suspension for 20 min at 37°C and for additional 20 min at 0°C in a high [NaCl] medium (150 mM NaCl, 5 mM glucose, 30 mM Hepes/Tris, pH 7.4) with the addition of 0.5–3.0 mM MgCl₂, 6 μ M A23187 (Boehringer-Mannheim) and 30 μ g/ml nystatin (Sigma), both dissolved in dimethyl sulfoxide. For removal of A23187 and nystatin, the cells were incubated four times in NaCl medium with the same Mg²⁺ concentration as in the loading medium plus 1% bovine serum albumin (Serva) for 10 min at 37°C. The NaCl medium was removed by washing the cells twice with cold choline Cl medium (150 mM choline Cl, 5 mM glucose, 30 mM Hepes/Tris, pH 7.4))

2.2. Mg²⁺ transport

Mg²⁺ transport was measured by reincubating a 10% suspension of Na⁺ + Mg²⁺-loaded cells at 37°C in media containing 5 mM glucose, 30 mM Hepes/Tris, pH 7.4, with various Na⁺ and Mg²⁺ content, as indicated. Na⁺ was isoosmotically substituted with choline Cl. At the beginning of reincubation and after different time points, as indicated, 0.5 ml aliquots of the cell suspensions were

Abbreviations: $[Mg^{2+}]_o$, $[Mg^{2+}]_i$, extracellular, intracellular Mg^{2+} concentration; $[Na^+]_o$, $[Na^+]_i$, extracellular, intracellular Na^+ concentration; pH_i , intracellular pH_i ; $[ATP]_i$ cellular ATP concentration; PMA_i , phorbol myristate acetate; db-cAMP, dibutyryl cAMP; TCA, trichloroacetic acid.

^{*} Corresponding author. Fax: +49 30 8384802.

centrifuged for 0.5 min at $10\,000 \times g$. For Mg^{2+} determination, $100~\mu\mathrm{l}$ supernatant was diluted with 1 ml 5% TCA/0.175% LaCl₃ and Mg^{2+} was measured by atomic absorption spectrophotometry (Philips, SP9). Mg^{2+} influx or Mg^{2+} efflux were calculated from the alterations in extracellular Mg^{2+} concentration and were related to the cell volume measured by haematocrit.

2.3. Na + efflux

Na⁺ efflux was determined from the same supernatants by flame photometry (KLiNa, Beckman). For correction of Mg²⁺-independent Na⁺ efflux, controls were run with Mg²⁺-free incubation medium.

2.4. Cellular Mg²⁺, Ca²⁺, Mn²⁺ and Na⁺ content

For measuring cellular Mg²⁺, Ca²⁺, Mn²⁺ and Na⁺ contents, the cells were washed twice with 150 mM choline Cl and deproteinized with 5% TCA/0.175% LaCl₃. Mg²⁺, Ca²⁺ and Mn²⁺ contents of the supernatants were measured by atomic absorption spectrophotometry, Na⁺ content by flame photometry.

2.5. Cellular ATP content

ATP content of normal and ATP-depleted erythrocytes was determined enzymatically in TCA extracts by the luciferase method, according to the instructions of the manufacturer (Boehringer-Mannheim, No. 567 736).

Cells were ATP-depleted by addition of 5 mM 2-deoxyglucose instead of glucose and 1 mM iodoacetate during washing and incubation of the cells. Control experiments without iodoacetate revealed a smaller decrease of ATP but no effect of iodoacetate on Mg²⁺ transport.

3. Results

3.1. Induction of Mg²⁺ uptake

When $\mathrm{Na}^+ + \mathrm{Mg}^{2^+}$ -loaded rat erythrocytes were incubated in a high [NaCl] medium, net Mg^{2^+} efflux occurred, which decreased with increasing $[\mathrm{Mg}^{2^+}]_o$ (Fig. 1), as found in previous experiments [1]. However, when the $\mathrm{Na}^+ + \mathrm{Mg}^{2^+}$ -loaded cells were incubated in choline Cl medium, containing 0. 5 mM Na^+ , the cells took up Mg^{2^+} (Fig. 1). In cells, that were not loaded with Mg^{2^+} , there was no Mg^{2^+} uptake (data not shown). These results show that Mg^{2^+} uptake can be induced in Mg^{2^+} -loaded rat erythrocytes when the Na^+ gradient was in the direction high $_i/\mathrm{low}_o$.

3.2. Effect of
$$[Mg^{2+}]_o$$
 and $[Mg^{2+}]_i$ on Mg^{2+} uptake

The rate of Mg^{2+} uptake was dependent on $[Mg^{2+}]_o$, obeying Michaelis-Menten kinetics with a K_m of 0.3 mM

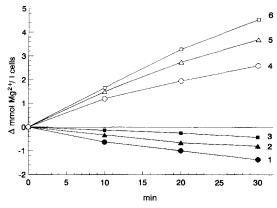


Fig. 1. Net ${\rm Mg}^{2+}$ efflux (below zero line) and net ${\rm Mg}^{2+}$ influx (above zero line) in Na⁺ + Mg²⁺-loaded rat erythrocytes. The cells were loaded with 6 μ M A23187 and 30 μ g/ml nystatin in the presence of 3 mM MgCl₂ and 150 mM NaCl ([Na⁺]_i = 73 ± 2 mM). Mg²⁺ transport was measured in NaCl medium with 150 mM NaCl and 0.5 mM MgCl₂ (1), 1.5 mM MgCl₂ (2), and 3.0 mM MgCl₂ (3), resulting in Mg²⁺ efflux, or in choline Cl medium with 0.5 mM NaCl and 0.5 mM MgCl₂ (4), 1.5 mM MgCl₂ (5), and 3 mM MgCl₂ (6), resulting in Mg²⁺ influx. Mean of two experiments was plotted.

(not shown). Mg^{2+} uptake was also increased with Mg^{2+} loading (Fig. 2). When the values of Fig. 2, measured at $[Na^+]_o = 0.5$ mM, were analyzed according to Hill as a function of $[Mg^{2+}]_o$ during Mg^{2+} loading, a Hill coefficient of 2.2 ± 0.2 was obtained (Fig. 3, curve A).

3.3. Effect of the Na⁺ gradient on Mg²⁺ transport

To analyze further the kinetics of net Mg^{2+} influx, we investigated net Mg^{2+} transport of Na^+ -loaded cells ($[\mathrm{Na}^+]_i = 73 \pm 2$ mM, mean \pm S.E., n = 6) which were simultaneously Mg^{2+} -loaded at $[\mathrm{Mg}^{2+}]_o = 0.5 - 3.0$ mM by replotting the values of Fig. 2 as a function of $[\mathrm{Na}^+]_i/[\mathrm{Na}^+]_o$ (Fig. 4). Cellular Mg^{2+} content amounted to 2.0 mmol/1 cells at $[\mathrm{Mg}^{2+}]_o = 0.5$ mM up to 4.9

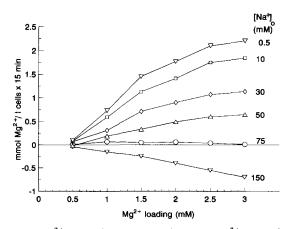


Fig. 2. Net ${\rm Mg}^{2+}$ efflux (below zero line) and net ${\rm Mg}^{2+}$ influx (above zero line) in ${\rm Na}^+ + {\rm Mg}^{2+}$ -loaded rat erythrocytes as a function of ${\rm Mg}^{2+}$ loading. The cells were loaded in the presence of 0.5–3.0 mM MgCl₂ and 150 mM NaCl. Reincubation was performed in media with 1 mM MgCl₂ and 0.5, 10, 30, 50, 75, and 150 mM NaCl as indicated. NaCl was isoosmotically substituted by choline Cl. Mean of two experiments.

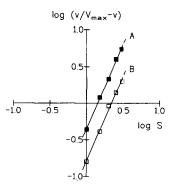


Fig. 3. Hill plot ($\log (v/V_{\text{max}} - v) = n \log S - \log K'$) of Mg²⁺ uptake by Na⁺ + Mg²⁺-loaded rat erythrocytes. $\log (v/V_{\text{max}} - v)$ was plotted as a function of $[\text{Mg}^{2+}]_o$ in the loading medium. (A) Rat erythrocytes with normal ATP content. Values measured at 0.5 mM NaCl and 1 mM MgCl₂ were taken from Fig. 2. (B) ATP-depleted rat erythrocytes. Analogous values were taken from Fig. 6.

mmol/l cells at $[Mg^{2+}]_o = 3.0$ mM, as found in previous experiments [1]. After reincubation in medium with $[Na^+]_o = 150$ mM, giving $[Na^+]_i/[Na^+]_o = 0.49$, net Mg^{2+} efflux occurred. Its rate rose with increasing Mg^{2+} -loading as characterized in previous experiments [1]. In media with $[Na^+]_o < 75$ mM, giving $[Na^+]_i/[Na^+]_o > 1$, net Mg^{2+} efflux switched to net Mg^{2+} influx. Its rate increased with Mg^{2+} loading and with increasing $[Na^+]_i/[Na^+]_o$ (Fig. 4).

These results show: (1) The increased rate of Mg^{2+} uptake with Mg^{2+} loading (Figs. 2, 4), indicates that the increase in $[Mg^{2+}]_i$ activated the Mg^{2+} influx system. According to Fig. 3 this activation was brought about by a co-operative effect.

(2) The intracellular/extracellular Na^+ gradient contributes to the driving force of Mg^{2+} uptake. As shown in Fig. 4, at $[Na^+]_i/[Na^+]_0 = 1$, there was no net Mg^{2+}

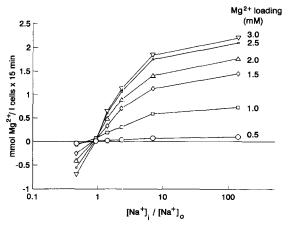


Fig. 4. Net Mg^{2+} efflux (below zero line) and net Mg^{2+} influx (above zero line) in $Na^+ + Mg^{2+}$ -loaded rat erythrocytes as a function of the Na^+ gradient. Same experiments as in Fig. 2. The cells were differently loaded with Mg^{2+} as indicated. Mg^{2+} transport was plotted as a function of $[Na^+]_i / [Na^+]_0$ (log scale), $[Na^+]_i = 73 \pm 2$ mM.

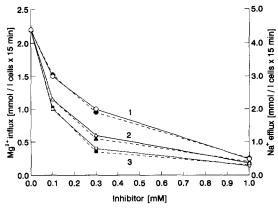


Fig. 5. Inhibition of net Mg^{2+} influx and net Na^+ efflux of $Na^+ + Mg^{2+}$ -loaded rat erythrocytes by amiloride (1), imipramine (2) and quinidine (3). The cells were loaded in the presence of 3 mM MgCl₂ and 150 mM NaCl. Reincubation in choline Cl medium with 0.5 mM NaCl and 1 mM MgCl₂. Na^+ efflux was corrected for passive (Mg^{2+} -independent) Na^+ leak by subtraction of Na^+ leak in Mg^{2+} -free reincubation medium. Open symbols (solid line), net Mg^{2+} influx; filled symbols (dashed line), net Na^+ efflux. Mean of two experiments.

transport. At $[\mathrm{Na^+}]_i/[\mathrm{Na^+}]_o > 1$, net $\mathrm{Mg^{2+}}$ influx occurred, whereas at $[\mathrm{Na^+}]_i/[\mathrm{Na^+}]_o < 1$ net $\mathrm{Mg^{2+}}$ efflux was observed. The curves of $\mathrm{Mg^{2+}}$ transport cross the zero line of net $\mathrm{Mg^{2+}}$ flux at $[\mathrm{Na^+}]_i/[\mathrm{Na^+}]_o = 1$. Within experimental error, the curves (Fig. 4) have the same slope below and above the crossing point. This result is evidence that the action of the $\mathrm{Na^+}$ gradient is the same on each side of the membrane. Moreover, since the crossing point is at $[\mathrm{Na^+}]_i/[\mathrm{Na^+}]_o = 1$, net $\mathrm{Mg^{2+}}$ flux under the used conditions may only depend on the $\mathrm{Na^+}$ gradient.

When Mg^{2+} -loaded rat erythrocytes were loaded in the presence of 75 mM Na⁺ instead of 150 mM resulting in $[Na^+]_i = 25$ mM and incubated at various $[Na^+]_o$ the rate of Mg^{2+} transport as a function of the Na⁺ gradient was identical (data not shown). Again, this result shows that the Na⁺ gradient contributes to the driving force for Mg^{2+} transport in Mg^{2+} -loaded rat erythrocytes.

3.4. Na⁺ coupling of Mg²⁺ uptake

During Mg²⁺ uptake, Na⁺ is released from Na⁺+ Mg²⁺-loaded rat erythrocytes. Mg²⁺ uptake and Na⁺ release were inhibited by amiloride, imipramine and quinidine (Fig. 5). Each of these substances inhibited Mg²⁺ uptake and Na⁺ release to the same extent, indicating that net Mg²⁺ influx is coupled to net Na⁺ efflux. The stoichiometric ratio can be obtained by comparing the rate of Mg²⁺ uptake and Na⁺ release. From the scales in Fig. 5 it can be seen that the stoichiometric ratio is 2 Na⁺ for 1 Mg²⁺. Hence, the stoichiometry is the same as was found for Na⁺/Mg²⁺ antiport from Mg²⁺-loaded rat erythrocytes [1].

From Fig. 5 the $K_{\rm i}$ values can be obtained. $K_{\rm i}$ for amiloride amounts to 0.3 mM, for imipramine to 0.15 mM and for quinidine to 0.1 mM. These values correspond to

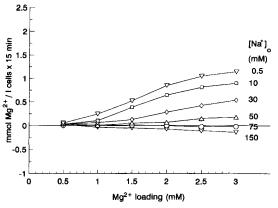


Fig. 6. ${\rm Mg}^{2+}$ transport in ${\rm Na}^+ + {\rm Mg}^{2+}$ -loaded, ATP-depleted raterythrocytes as a function of ${\rm Mg}^{2+}$ loading. The cells were loaded in the presence of 0.5–3.0 mM ${\rm MgCl}_2$ and 150 mM NaCl, resulting in $[{\rm Na}^+]_i=72\pm2$ mM. Reincubation was performed in media with 0.5, 30, 50, 75 and 150 mM NaCl and 1 mM ${\rm MgCl}_2$ with the addition of 5 mM 2-deoxyglucose instead of glucose and 1 mM iodoacetate for ATP depletion. Analogous experiments as in Fig. 4. Mean of two experiments.

the K_i values which were obtained for inhibition of net Mg^{2+} efflux via Na^+/Mg^{2+} antiport [4].

3.5. Role of ATP in Mg²⁺ uptake

Net Mg²⁺ efflux via Na⁺/Mg²⁺ antiport in rat erythrocytes was dependent on ATP [1]. Its function has not been defined so far. The function of ATP in net Mg²⁺ influx was analyzed by repeating the experiment shown in Figs. 2 and 4 with ATP-depleted cells. Incubating Na⁺ + Mg²⁺-loaded cells with 5 mM 2-deoxyglucose plus 1 mM iodoacetate instead of glucose reduced ATP content by 85% (from 0.6 to 0.09 mmol/l cells). The results with ATP-depleted cells were similar to those obtained from control cells. Again, Mg²⁺ uptake was increased with Mg²⁺ loading of the cells and with the Na⁺ gradient (Figs. 6 and 7). However, the rates of Mg²⁺ flux were

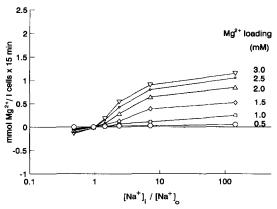


Fig. 7. Mg^{2+} transport in $Na^+ + Mg^{2+}$ -loaded, ATP-depleted rat erythrocytes as a function of the Na^+ gradient (log scale). Same experiments as in Fig. 6. $[Na^+]_i = 72 \pm 2$ mM.

Table 1
Regulation of Mg²⁺ uptake by rat erythrocytes

Addition	M	Mg ²⁺ uptake (mmol Mg ²⁺ /1 cells per 30 min)
Control		1.50 ± 0.09
PMA	10^{-6}	1.91 ± 0.11 ^a
Staurosporine	10^{-7}	$0.94 \pm 0.10^{\ b}$
Okadaic acid	10^{-6}	1.72 ± 0.04 a
db-cAMP	10^{-4}	1.51 ± 0.08
PMA	10^{-6}	
+ staurosporine	10^{-7}	0.99 ± 0.04 b
PMA	10^{-6}	
+ okadaic acid	10^{-6}	$1.99 \pm 0.02^{\ b}$

The cells were loaded in the presence of 150 mM NaCl and 1 mM MgCl₂. Mg²⁺ uptake was measured in choline Cl medium with 0.5 mM NaCl and 1 mM MgCl₂. Mean \pm S.E. of four experiments. Significant differences to controls by unpaired Student's *t*-test. ^a P < 0.05, ^b P < 0.01.

lower than those in control cells (Figs. 2 and 4). In accordance with this result, in ATP-depleted cells, V_{max} of Mg²⁺ uptake was reduced by 33% (data not shown). When the rate of Mg²⁺ uptake in ATP-depleted cells, measured at $[Na^+]_0 = 0.5$ mM (Fig. 6), was analyzed according to Hill as a function of [Mg²⁺]₀ during Mg²⁺ loading, a Hill coefficient of 2 was obtained (Fig. 3, curve B). The same Hill coefficient was found in control cells (Fig. 3, curve A). However, $\log K'$ was increased in ATP-depleted cells by $\Delta \log K' = 0.48$ (factor of 3) (Fig. 3), indicating a lower affinity of [Mg²⁺]_i. For further characterisation of the function of ATP, we tested the effect of protein phosphorylation by protein kinase A (activated by db-cAMP) and protein kinase C (activated by PMA) which are both inhibited by staurosporine [5]. Moreover, the involvement of phosphorylated protein was tested by addition of okadaic acid, which inhibits Ser/Thr-protein phosphatases 1 and 2A [6,7]. As shown in Table 1, Mg²⁺ uptake was stimulated by PMA and inhibited by staurosporine. Okadaic acid had a small stimulatory effect, and db-cAMP was ineffective, indicating stimulation by protein kinase C. Stimulation of Mg²⁺ uptake by PMA was less expressed in cells loaded in the presence of 3.0 mM MgCl₂ compared to 1.0 mM MgCl₂ (data not shown).

3.6. Cation specificity of Mg²⁺ uptake

In previous experiments with Mg²⁺-loaded rat erythrocytes additional Ca²⁺ loading had no significant effect on Mg²⁺ efflux via Na⁺/Mg²⁺ antiport [8]. However, in these experiments Ca²⁺ loading was limited due to an effective Ca²⁺ pump which prevented sufficient Ca²⁺ loading.

Reversibility of Na⁺/Mg²⁺ antiport offers the possibility to test cation specificity by extracellular addition of divalent cations, which would be toxic when applied intracellularly. As shown in Fig. 8, Mg²⁺ uptake was inhibited by Ca²⁺, Mn²⁺, Ni²⁺, and La³⁺. At the used concentrations, Sr²⁺ did not affect Mg²⁺ uptake.

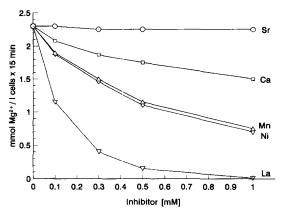


Fig. 8. Inhibition of Mg^{2+} uptake in $\mathrm{Na}^+ + \mathrm{Mg}^{2+}$ -loaded rat erythrocytes by extracellular SrCl_2 , CaCl_2 , MnCl_2 , NiSO_4 and LaCl_3 . The cells were loaded in the presence of 3 mM MgCl $_2$ and 150 mM NaCl and reincubated in choline Cl medium with 0.5 mM NaCl and 1.3 mM MgCl $_2$. Mean of two experiments.

Using Dixon plots the inhibition was defined as being competitive (not shown). The K_i values amounted to 0.4 mM for Ca²⁺, 0.02 mM for Mn²⁺ and Ni²⁺, and to 0.005 mM for La³⁺. Mn²⁺ was taken up by the cells (data not shown). Also, in preceding experiments Mn²⁺ was taken up by rat erythrocytes in exchange for Mg²⁺ via Na⁺/Mg²⁺ antiport [9,10], indicating that Mn²⁺ can substitute for Mg²⁺ in Na⁺/Mg²⁺ antiport. Ca²⁺ was not taken up by the cells (data not shown). Uptake of Sr²⁺, Ni²⁺ and La³⁺ via Na⁺/Mg²⁺ antiport was not investigated.

3.7. Cell type specificity of Mg²⁺ uptake

In analogous experiments human erythrocytes were loaded with Na⁺ and Mg²⁺. However, under identical conditions human erythrocytes did not perform Mg²⁺ uptake (data not shown). In similar experiments, also Schatzmann [11] could not obtain Mg²⁺ uptake in human erythrocytes, whereas in ferret erythrocytes Na⁺/Mg²⁺ antiport could be reversed by reversing the Na⁺ gradient [12,13]. These results show that in erythrocytes Na⁺/Mg²⁺ antiporters are existing with different species-dependent properties.

4. Discussion

The results have shown that rat erythrocytes can be induced to take up extracellular Mg²⁺ in exchange for intracellular Na⁺. Prerequisite is:

- (1) The cells must be loaded with Mg²⁺,
- (2) $[Na^+]_i/[Na^+]_o$ must be > 1.

In rat erythrocytes the Na⁺ gradient contributes to the driving force for net Mg²⁺ transport. Additionally, 2 intracellular Na⁺ are exchanged for 1 extracellular Mg²⁺ in Mg²⁺ uptake. The same stoichiometric ratio helds for net Mg²⁺ efflux via Na⁺/Mg²⁺ antiport [1].

Net Mg^{2+} influx coupled to net Na^+ efflux was inhibited by about the same degree as net Mg^{2+} efflux via Na^+/Mg^{2+} antiport by amiloride, imipramine and quinidine. Moreover, Mn^{2+} inhibited Mg^{2+} uptake competitively and was taken up itself by Na^+/Mg^{2+} antiport [9,10]. These results suggest that Na^+/Mg^{2+} antiport in rat erythrocytes can operate reversibly.

A prerequisite for demonstrating reversible Na⁺/Mg²⁺ antiport in rat erythrocytes was Mg²⁺ loading. Net Mg²⁺ efflux via Na⁺/Mg²⁺ antiport was also only seen in Mg²⁺-loaded cells [1]. In rat erythrocytes, net Mg²⁺ efflux as a function of [Mg²⁺]_i revealed a Hill coefficient of 2.44 [1]. This result was explained by the assumption that 1 intracellular Mg²⁺ is released in exchange for 2 extracellular Na⁺ in Na⁺/Mg²⁺ antiport and that 2 additional intracellular Mg²⁺ are operating co-operatively to activate the Na⁺/Mg²⁺ antiporter. In the present experiments, the Hill coefficient for net Mg²⁺ influx amounted to 2.2, again indicating that 2 intracellular Mg^{2+} are needed in Mg^{2+} uptake via reversible Na^+/Mg^{2+} antiport. The increased Mg²⁺ uptake at increased Mg²⁺ loading (Fig. 2) fits into this scheme, indicating that more Na⁺/Mg²⁺ antiporter molecules are activated by increasing [Mg²⁺]_i. The Na⁺/Mg²⁺ antiporter may have different Mg²⁺ sites: two intracellular Mg²⁺ binding sites for activating Na⁺/Mg²⁺ antiport, an intracellular Mg²⁺ binding site for Mg²⁺ efflux and an extracellular Mg²⁺ binding site for Mg²⁺ influx. Whether the extracellular and intracellular Mg²⁺ transport site of the Na⁺/Mg²⁺ antiporter in rat erythrocytes is operating with the same or with different affinity at both sides of the membrane cannot be decided because of the co-operative action of [Mg²⁺], in Mg²⁺ transport.

The role of ATP in net Mg²⁺ influx is to increase the affinity of the Na⁺/Mg²⁺ antiporter for intracellular Mg²⁺. Taking into account the co-operative function of [Mg²⁺]_i (Fig. 3) the possible action of ATP may be phosphorylation of the Na⁺/Mg²⁺ antiporter by MgATP and increased binding of Mg²⁺ to a modifier site of the phosphorylated Na⁺/Mg²⁺ antiporter. At lower cellular ATP, less Na⁺/Mg²⁺ antiporters may be activated, resulting in lower V_{max} of Mg²⁺ uptake. This mechanism is in agreement with the stimulation of Mg²⁺ uptake by PMA and okadaic acid and its inhibition by staurosporine (Table 1), indicating that protein kinase C may phosphorylate the Na⁺/Mg²⁺ antiporter or a protein, which is involved in Mg²⁺ uptake. This mechanism may represent regulation of Na⁺/Mg²⁺ antiport. As shown by other experiments [7,14] PMA and okadaic acid enhance protein phosphorylation in erythrocytes. The results indicate that Na⁺/Mg²⁺ antiport has very similar properties to Na+/H+ and Na⁺/Ca²⁺ antiport. Na⁺/H⁺ is silent at physiological pH; but is activated when the cytoplasm becomes acidic which is mediated by the allosteric effect of an intracellular modifier site. Besides acidification Na⁺/H⁺ antiport was activated by okadaic acid [6] and phorbol ester

[15] via phosphorylation which increases the affinity of the Na⁺/H⁺ antiporter for H⁺ at the internal regulatory site [6,15,16]. Similarly, also Na⁺/Ca²⁺ antiport is activated by increased [Ca²⁺], and by phosphorylation [17-19]. Thus, Na⁺/Mg²⁺ antiport of rat erythrocytes may have a similar structure to Na⁺/H⁺ and Na⁺/Ca²⁺ antiporters including their isoforms [16,17,20,21]. The physiological function of Na⁺/Mg²⁺ antiport in vivo may be the performance of net Mg²⁺ efflux. $[Mg^{2+}]_i$ is buffered [4] by reversible reaction with Mg²⁺-binding ligands, particularly ATP. When [Mg²⁺], is increased by release from Mg²⁺binding ligands which can occur by ATP depletion or acidification [22], Mg²⁺ can be transported out of the cell to support constancy of [Mg²⁺], [22]. Mg²⁺ uptake via Na⁺/Mg²⁺ antiport may play no role because in vivo the Na⁺ gradient (e.g., in rat erythrocytes) does not become > 1.

References

- Günther, T., Vormann, J. and Höllriegl, V. (1990) Biochim. Biophys. Acta 1023, 455–461.
- [2] Günther, T., Vormann, J. and Förster, R. (1984) Biochem. Biophys. Res. Commun. 119, 124-131.
- [3] Günther, T. and Vormann, J. (1990) Magnesium Trace Elem. 9, 279-282.

- [4] Günther, T. (1993) Min. Electr. Metab. 19, 259-265.
- [5] Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M. and Tomita, F. (1986) Biochem. Biophys. Res. Commun. 135, 397-402.
- [6] Bianchini, L., Woodside, M., Sardet, C., Pouyssegur, J., Takai, A. and Grinstein, S. (1991) J. Biol. Chem. 266, 15406-15413.
- [7] Bordin, L., Clari, G., Bellato, M., Tessarin, C. and Moret, V. (1993) Biochem. Biophys. Res. Commun. 195, 723-729.
- [8] Günther, T. and Vormann, J. (1989) FEBS Lett. 250, 633-637.
- [9] Féray, J.C. and Garay, R. (1987) J. Biol. Chem. 262, 5763-5768.
- [10] Günther, T., Vormann, J. and Cragoe, Jr. E.J. (1990) FEBS Lett. 261, 47-51.
- [11] Schatzmann, H.J. (1993) Biochim. Biophys. Acta 1148, 15-18.
- [12] Flatman, P.W. and Smith, L.M. (1990) J. Physiol. 431, 11-25.
- [13] Flatman, P.W. and Smith, L.M. (1991) J. Physiol. 443, 217-230.
- [14] Cohen, C.M. and Foley, S.F. (1986) J. Biol. Chem. 261, 7701-7709.
- [15] Sardet, C., Counillon, L., Franchi, A. and Pouyssegur, J. (1990) Science 247, 723-726.
- [16] Levine, S.A., Montrose, M.H., Tse, M. and Donowitz, M. (1993) J. Biol. Chem. 268, 25527–25535.
- [17] Reeves, J.P. (1992) Arch. Biochem. Biophys. 292, 329-334.
- [18] Caroni, P. and Carafoli, E. (1985) Eur. J. Biochem. 132, 451-460.
- [19] DiPolo, R. and Beaugé, L. (1987) Biochim. Biophys. Acta 897, 347-354.
- [20] Tse, C.M., Brant, S.R., Walker, M.S., Pouyssegur, J. and Donowitz, M. (1992) J. Biol. Chem. 267, 9340-9346.
- [21] Nakasaki, Y., Iwamoto, T., Hanada, H., Imagawa, T. and Shigekawa, M. (1993) J. Biochem. 114, 528-534.
- [22] Günther, T. and Vormann, J. (1994) Renal Physiol. Biochem. 17, 279-286.